If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+160x=4400
We move all terms to the left:
3x^2+160x-(4400)=0
a = 3; b = 160; c = -4400;
Δ = b2-4ac
Δ = 1602-4·3·(-4400)
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-280}{2*3}=\frac{-440}{6} =-73+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+280}{2*3}=\frac{120}{6} =20 $
| 4+8n=10+2n | | 1.2x=1.08 | | -12=-32+4c | | –6c=–8c+8 | | y=72-(-8y-36) | | 3–2x=x+1 | | 3x+1−2x+3=243 | | F(4)=4-2x | | 3(2x+4)=24+6 | | 1/2x=2x+6 | | -2(3s-1)-2=-3(9s+5)-3 | | +2k+19=3k-1 | | 3x-12+2x+2=180 | | 3x+21=6x=60 | | 130=6x+4x | | Y=72-(-8y)-36 | | |8a+5|=-53 | | 352=-11(x-8) | | -8c-225=4c+-5(-7c+4 | | 16-(3-4y)=2(y=2) | | r/4−3=3 | | -4d=7+3d | | –3(–5+2k)= | | 4x+2=1+4x | | 10x/x-4=6 | | 9(1-2x)=2(2-4x) | | x²=-9x | | 2x-15+x-9=180 | | 5s=4s=-72 | | -5p=-4p-7 | | 0.8x0.6= | | 8p-1=3p+24 |